The Electrical Conductivity of the Molten Binary Systems $CO(NH_2)_2$ -MNO₃ (M = Li, Na, NH₄)

Chao-Chen Yang^a, Min-Fong Shu^b, and Po-Yuan Cheng^c

- ^a Department of Environmental Resources Management, Overseas Chinese Institute of Technology Taichung, Taiwan, R.O.C.
- b Graduate School of Engineering Science & Technology (Doctoral Program), National Yunlin University of Science and Technology, Touliu, Yunlin, Taiwan, R.O.C.
- ^c Graduate School of Chemical Engineering, National Yunlin University of Science and Technology, Touliu, Yunlin, Taiwan, R.O.C.

Reprint requests to C.-C. Y.; Fax: 886-5-531-2071; E-mail: prof.ccyang@gmail.com

Z. Naturforsch. **60a**, 848 – 852 (2005); received September 19, 2005

The electrical conductivity of molten $CO(NH_2)_2$ -MNO₃ (M = Li, Na, NH₄) with various nitrate contents has been measured at 358 – 393 K. For Li and Na the conductivity increased with increasing concentration of urea [CO(NH₂)₂], whereas for NH₄ the conductivity decreased with increasing concentration of urea. The relationship between the conductivity and the temperature can be expressed by $\kappa = \kappa_0 \exp(-E_K/RT)$. For the mole fractions 0.7, 0.8, and 0.9 of urea, the activation energies E_K are 31.28, 25.91, and 22.96 kJ/mol for the CO(NH₂)₂-LiNO₃ system, and 32.64, 30.51, and 25.40 kJ/mol for the CO(NH₂)₂-NaNO₃ system, whereas for the mole fractions 0.5, 0.7, and 0.8 of urea the activation energies are 20.39, 19.73, and 18.95 kJ/mol for the CO(NH₂)₂-NH₄NO₃ system. The more stable the forming complex is, the lower is the conductivity. The conductivities are in the order CO(NH₂)₂-NH₄NO₃ > CO(NH₂)₂-NaNO₃ > CO(NH₂)₂-LiNO₃.

Key words: Electrical Conductivity; Activation Energies; Amide Molten Salts.